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Abstract

Microbial motility is often characterized by ‘run and tumble’ behavior which consists of bacteria making sequences of
runs followed by tumbles (random changes in direction). As a superset of Brownian motion, Levy motion seems to
describe such a motility pattern. The Eulerian (Fokker–Planck) equation describing these motions is similar to the classical
advection–diffusion equation except that the order of highest derivative is fractional, a 2 (0, 2]. The Lagrangian equation,
driven by a Levy measure with drift, is stochastic and employed to numerically explore the dynamics of microbes in a flow
cell with sticky boundaries. The Eulerian equation is used to non-dimensionalize parameters. The amount of sorbed time
on the boundaries is modeled as a random variable that can vary over a wide range of values. Salient features of first pas-
sage time are studied with respect to scaled parameters.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

From the perspective of human health, it is imperative that we develop a predictive capability for microbial
evolution in pores and porous media. More generally, advection, diffusion, adsorption and other transport
modes must be put into a mathematical framework to evaluate the fate of individual microbes and microbial
communities as they travel through a porous body. Much of the past effort to model microbial dynamics in
porous media is based upon the classical advection–diffusion equation (ADE) subject to rate limited adsorp-
tion [1–3]. Unfortunately, even for passive scalars, the ADE is not applicable to most natural porous media [4].
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Microbes being living organisms, are motile entities [5–7]. Studies suggest that the effect of motility on the
dispersive process is significant and is intimately tied to the flow factors [8,9]. Within a single pore, microbial
transport seems to agree with prediction from the ADE only if some kind of fitting parameter is introduced
[2,10]. A review of various established methods to model microbial transport may be found in [11].

We focus here on the mathematical treatment of the Lagrangian dynamics of a single microbe or a system
of such particles in low concentration. Simulations are performed within a single slit-pore to model the move-
ment of a motile particle as it is transported by an advecting bulk fluid. When the particle touches a wall it
sticks for a period of time before being released back into the fluid. An a-stable distribution is used to model
the sticking time because of its heavy tail. Levy motions are employed to model the motile particles within the
pore. These distributions are renormalizable and hence may be upscaled to complex porous bodies [12,13].

In subsequent sections we discuss the typical pattern of microbial motility and adhesion, introduce a-stable
Levy motion with their corresponding stochastic differential equations (SDE) and their fractional Fokker–
Planck equations. Realizations of the SDE are generated between two infinite parallel surfaces subject to wall
stickyness. Results of the numerical study are presented and discussed in the context of a nondimensional
parameterization associated with the underlying Fokker–Planck equation.

2. Microbial dynamics

Microbial transport in porous media involves a number of complex and interacting processes [11]. Because
microbes are living organisms, their transport in porous media is far more complex than an abiotic colloid.
Microbial transport in porous media is affected by not only advection and hydrodynamic dispersion, but also
by a number of strictly biological processes. For many of these processes, no definitive correlation with the
overall transport process has been established [11]. However, the net resultant of these processes imparts a
self-propagating motile character to a microbe [6]. Microbial motility and other physiochemical and biological
processes also give rise to adhesion with pore walls. Adhesion is the first step in biofilm formation and as such
is a very important process for systems where biofilm development or impediment is desired [14].

Microbes are often equipped with swimming devices. A typical example is a filament attached to a rotary
motor [6], the combination of which is called a flagella. The movement of the flagella imparts a run and tumble
behavior to the microbe [6,9]. This behavior consists of sequence of runs when all motors rotate together and
flagella coalesce to form a bundle. When one or more of the rotary motors changes direction, it results in fla-
gellar dispersion and consequently the microbe tumbles. The change in direction by a tumble is approximated
as uniformly random. The microbes thus execute a self-propelled random walk, and it has been shown that the
length of the steps may depend on energy gradients [6].

The run and tumble nature of microbial motility has an enhancing effect on the diffusion of colonies and
passive scalars residing in surrounding medium. It has been observed that the diffusion process is superdiffu-
sive with mean-square displacement growing faster than linear in time [9]. The extent of departure from Fic-
kian diffusion has been shown to be a function of microbial concentration [9,15], viscosity of the medium
[5,16], and pore geometry [17]. As mentioned above, it is also weakly tied to spatial gradients of chemical attr-
actants or repellants [6]. Hence for dilute concentrations of microbes swimming through a given fluid at stan-
dard conditions in an experimental flow cell, a probability distribution can be applied to describe the motility
pattern. It has been observed that Levy motion defined by a-stable probability distributions of increments best
describes the runs and tumbles of microbial motion [6,18,19]. The mixing measure within the definition of a
Levy process may be employed to account for microbe food (energy) sources by skewing the movement along
a gradient. In essence, Levy motion is a superset of Brownian motion, but unlike Brownian motion, particles
undergoing Levy motion take jumps of varying lengths after each time interval Dt. The probability of occur-
rence of extreme events (very long jumps) is tied to the stability parameter a.

3. Microbial adhesion

It has been observed that the tendency of microbes to attach to surfaces profoundly influences their trans-
port characteristics [8,20]. The process of adhesion of microbes to solid surfaces has been seen to be guided by
flagellar movement and flow velocity, amongst other relevant chemical and biological considerations [14]. A
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summary of various physiochemical and biological processes that govern the adhesion and other transport
characteristics of microbes are presented in [11].

Analysis of the breakthrough curves (travel time to, or concentration at a control plane) have suggested
that the sorption process is dominated by both reversible and irreversible adhesion [20]. Experimental obser-
vations and simulations have also confirmed that the detachment process results in an elution curve with a
long and thin tail [3,8], implying that a fraction of microbes nearly irreversibly attach. An overview of current
approaches used to model microbial attachment and detachment is presented in [21]. It has been proposed that
linking attachment and detachment rates to metabolic activity and growth of the substrate is vital to improve-
ments in quantitative analysis of microbial adhesion. In absence of such cause-effect relations, the current
models which are empirical in nature, fall short of an accurate characterization of the slow elution curves
of microbial detachment. Bonilla and Cushman [18] have recently proposed using power law scaling for wait-
ing times for microbes. This approach enables one to explain the long-tailed behavior of microbial detachment
and is also consistent with the physical and chemical heterogeneities that are invariably present in the system.
Successful simulations involving power law trapping times have been used to explain observed trends in trans-
port through porous samples [22–24].

4. a-Stable levy processes and fades

Levy motion is a generalization of the concept of Brownian motion to processes with infinite variance. Clas-
sical Brownian diffusion is characterized by a Gaussian distribution. In Levy motion, long flights are inter-
spersed with shorter jumps, resulting in infinite variance and fractal paths. A two dimensional example of
1000 steps in Levy and Brownian motions is shown in Fig. 1. Starting from origin, and owing to some large
intermittent jumps, the Levy motion covers a much larger distance than the Brownian.

The transition density for increments in a Levy motion is given by an a-stable distribution [25,26] which is a
family of probability distributions characterized by four parameters: a, b, l, and r. The l and r are shift and
scale parameters which do not determine the shape of the distribution. A number of iid random variables have
a stable distribution if a linear combination of these variables has the same distribution, except for possibly
different shift and scale parameters. Gaussian distributions and symmetric a-stable distributions look very
much alike except that the latter is characterized by a heavier tail. Probability density functions and cumula-
tive distribution functions for a few symmetric and centered a-stable distributions are shown in Figs. 2 and 3
respectively. Whereas Gaussian distributions decay quickly, a-stable distributions decrease as 1/x1+a, where a
lies between 0 and 2. The Gaussian distribution corresponds to the case where a = 2.

Levy proved a generalization of DeMoive’s central limit theorem by removing the assumption of finite var-
iance on iid random variables Xi [27,28]:
Fig. 1.
unity.
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n!1
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Trace of (a) Levy motion with a = 1.5 and (b) Brownian motion for first 1000 steps starting at (0,0) and having a scale factor of
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Fig. 2. Probability density function for symmetric and centered a-stable distributions with unit scale factor.
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Fig. 3. Cumulative distribution function for symmetric and centered a-stable distributions with unit scale factor.
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which states that the centered and normalized sum of iid random variables converges in distribution to an ‘‘a-
stable” variable with index of stability 0 < a 6 2, skewness coefficient �1 6 b 6 1, shift parameter l = 0, and
spread parameter r = 1.

By envisioning the sum in Eq. (1) as a random walk with the number of steps, n, equal to the total time
divided by the time per move, Dt, we can recast the generalized central limit theorem in the form
lim
t
Dt!1

X 1 þ X 2 þ � � � þ X t
Dt
� vt

ðBtÞ
1
a

¼ Y � Sa ðr ¼ 1; b; l ¼ 0Þ; ð2Þ
where v = l/Dt and B = ra/Dt. The parameters l and r appearing in the definition of v and B are the shift and
spread parameter for each iid random variable Xi. A stochastic process {X(t) : t P 0} is called an a-stable Levy
motion if it has independent increments and X(t) � X(s) � Sa((t � s)1/a, b, 0) for any 0 6 s < t <1. Since most
stable densities cannot be written in real space, they are typically expressed in terms of their Fourier trans-
forms (characteristic functions) as [26]
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P ðk; tÞ ¼ exp �ikX 0 � Btjkja 1� ibsignðkÞ tan
pa
2

� �
þ ikvt

n oh i
; ð3Þ
where X0 = X(0) is the initial position of the walk and sign(k) is 1 if k > 0, and �1 if k < 0. The positive num-
ber (Bt)1/a in Eq. (2) indicates that the stable density is invariant upon scaling by t1/a. Using a well known
property of the characteristic function, namely hXn(t)i = in[dnP(k, t)/dkn]k=0, one can easily show that for
all m > a, hXmi =1. Hence for any a < 2, a-stable densities have infinite variance. However, a finite sampling
of the density will yield a finite sample variance. Since the densities are scale invariant with t1/a, the sample
variance will grow proportional to t2/a, i.e. always equal to or faster than Fickian growth. For cases where
the distribution is not skewed (b = 0), Eq. (3) reduces to
P ðk; tÞ ¼ exp½�ikX 0 � fBtjkja þ ikvtg�: ð4Þ

The value of a in Eq. (3) or (4) determines how non-Gaussian a particular density becomes. As the value of

a decreases from a maximum of 2, the tail of the probability density becomes more pronounced (see Figs. 2
and 3). These interesting properties of the a-stable variables have found widespread use in a variety of fields,
such as in the study of microbial dynamics [18,19], transport in porous media [29–31], anomalous dispersion
[32], and super diffusion in turbulence [33–35].

The Fokker–Planck equation for a-stable Levy motion is fractional [36] and is given by
oP ðx; tÞ
ot

¼ DraP ðx; tÞ; ð5Þ
where D = B/jcos(pa/2)j and P(x, t = 0) = d(x � x0). In real space the fractional Laplacians are integrodiffer-
ential operators, and hence Eq. (5) describes a spatially nonlocal process. When infinite bounds are used, the
fractional Laplacian of order a (a 2 (0, 2], a 6¼ 1) for f(x, t) is expressed in 3-dimension as [13,32]
ðraf Þ^ ¼
Z
ks¼1k
ðihk; siÞaMðdsÞ

" #
f̂ ðk; tÞ; ð6Þ
where (�)^ represents Fourier transform
f̂ ðk; tÞ ¼
Z

R3

e�ihk;xif ðxÞdx ð7Þ
and M(ds) is an arbitrary probability mixing measure on the unit sphere {s 2 R3 : ksk = 1}.
A spatial fractional derivative describes particles that move with long-range spatial dependence or high

velocity variability [25]. If a one-dimensional random walk is considered as a motion on an infinite lattice, then
a larger-order fractional derivative places more weight on nearer cells and probability of jumps to distant cells
decrease very quickly with distance. Conversely, lower-order fractional derivatives place relatively less weight
on nearer cells and probability of jumps to distant cells decrease slowly with distance. Like ordinary deriva-
tives, the fractional integrodifferential operators are linear operators but differ in some other important prop-
erties such as the fractional derivative of a constant is not zero.

5. Numerics

We take a Lagrangian perspective throughout the remainder of this manuscript; that is, we solve the sto-
chastic Levy driven ODE with parabolic drift. We do so because we are unable to formulate the Eulerian state-
ment of the sticky-wall boundary conditions.

As already mentioned, it is well known that many species of microbes divide their time between a motile
free swimming phase and a sorbed phase in which they may exist in a biofilm or attach to a surface. The
motion of a free-swimming microbe relative to the moving fluid consists of straight runs followed by tumbles
(random changes in direction) [6], resembling to the typical trace of a Levy flight [37]. The example shown in
Fig. 4 compares the path of an E. Coli cell and that of a tracer executing a 1.2-stable Levy motion.

We model a microflow chamber as an infinite slit-pore. Hence equations of flow between two parallel plates
apply to our conceptual domain. Particle transport is modeled as a Levy motion with sticky boundaries. The



Fig. 4. Comparison between a swimming E. Coli and a Levy motion with a = 1.2 (adapted from Berg, Phys. Today, January 2000 [6]).
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parameters for the Levy motion can be obtained from the finite-size Lyapunov exponent [38,39]. The local
sorption time is modeled as the absolute value of an a-stable distribution. Our numerical model releases par-
ticles at the origin and follows them to a passage plane located some distance downstream. Particles executing
multidimensional random motion are liable to cross the passage plane multiple times. The first passage time
(FPT) is a quantity of greater interest and under certain circumstances can be tied to the breakthrough curve.

A schematic of the computation cell is shown in Fig. 5. Particles are transported by a Levy process with
drift. The jump length is modeled as a symmetric and centered a-stable distribution whereas the adsorbed time
is modeled as the absolute of a symmetric and centered a-stable distribution. The top and bottom walls are
separated by a distance 2b in the y-direction. A passage plane is located at a distance L in the direction of
the drift.

At time t = 0, particles are released from the source and start swimming and drifting. The angle of swim
(flight) after each small time step interval, Dt, is uniformly distributed over a unit sphere at the current location
of the particle. The displacement vector for the special case of zero sorption is described by the stochastic
equation X ðtÞ ¼ X ð0Þ þ

R t
0

vðX ðrÞÞdr þ LðtÞ, where v is the Poiseuille flow velocity and L is a Levy process
which accounts for self-motility. If af and rf are the parameters of the Levy motion (flight) in the fluid phase
and aw and rw are the parameters of the a-stable distribution waiting time (sorbed time) at the walls, then the
transport process is computed as follows: (i) generate uniform iid angles; (ii) generate the a-stable flight length,
Saf(rf, 0, 0), using the Chambers, Mallows-Stuck (CMS) algorithm [40] (see Appendix A); (iii) add flight length
vector to the current position of the particle; (iv) check if the particle has hit one of the walls, and if so, then
modify the length computed in step (ii) and compute the new position vector; (v) compute and the drift from
Poiseuille flow based upon the new position of the particle; (vi) if a particle has hit one of the walls in step (iv),
then compute its waiting time, jSaw(rw, 0, 0)j, using CMS algorithm and insert it into the clock; (vii) test if the
particle has reached the passage plane located downstream; (viii) repeat.
2b
SSoouurrccee

Passage
Plane

L

Fig. 5. Schematic of the domain of computation.
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To capture the long-tailed behavior of an a-stable distribution, it typically requires on the order of 105

particles with each particle on an average experiencing �103 steps. Besides the distribution parameters
(af, aw, rf, rw), and the length and the time scale, there are two other geometric parameters (b and L) and
the fluid properties (pressure gradient and viscosity) that govern the transport process. To examine the behavior
of FPT as a function of these variables is a tedious exercise and gives little insight into the mechanism of trans-
port. Hence parameters were grouped together to form suitable non-dimensional numbers and a sensitivity
analysis was carried out. This was accomplished by employing the fractional Eulerian equation with sticky
boundaries.

6. Non-dimensionalization

As discussed earlier, the Fokker–Planck equation for an af-stable Levy process in an infinite domain can be
written as a two-dimensional fractional advection–diffusion equation
oC
ot
¼ Draf C � v

oC
ox
; ð8Þ
where C is the concentration of particles at any given location x and t, D is coefficient of diffusion as described
in Eq. (5), and v is the drift velocity in the x-direction.

By defining the following non-dimensional parameters
X ¼ x
L
; ð9aÞ

T ¼ vt
L
; ð9bÞ

Y ¼ y
b
; ð9cÞ

P ¼ vLaf�1

D
; ð9dÞ
and
R ¼ baf

ðDL=vÞ ; ð9eÞ
Eq. (8) can be re-written as
oC0

oT
¼ 1

P
o

af C0

oX af
þ 1

R
o

af C0

oY af
� oC0

oX
; ð10Þ
where C0 is the normalized C with respect to the initial concentration. The non-dimensional parameter P is
analogous to the Peclet number encountered in a classical advection–diffusion equation. The parameter R

can be interpreted as the ratio between width of the pore and transverse dispersive length. Note that R can
be rewritten as R ¼ ðvbaf�1=DÞðb=LÞ in comparison to Eq. (9d). A smaller value of R will mean that the bound-
aries of the domain impose a higher restriction on the evolution of plume in the transverse direction. Hence R

acts as a constricting agent to the transverse diffusion of Levy motion. In absence of any stickiness on the
walls, Eq. (10) suggests C0(X, Y; T) = f(af, P, R).

The correct form of the Eulerian boundary condition at the sticky walls is not obvious, but it is also not
necessary information. The frequency of particle attachment to the wall depends on b, af and rf. The random
amount of time for which a particle stays on the wall is a function of aw and rw. Clearly aw, owing to character
of an a-stable distribution, will serve as an independent parameter in the determination of C0. The other non-
dimensional parameter which is introduced by the presence of sticky boundaries can be deduced if a way is
found to relate the average amount of time a particle stays on the wall to the average amount of time it spends
in the fluid phase. For this, consider the moment at which a particle leaves the wall and re-enters the fluid after
getting attached for the very first time. A single step will on average take the particle to a distance of lrf from
the wall, where l is a proportionality coefficient based primarily on af. For af values higher than 1.2, l lies
between 1.1 and 3 [25]. The number of steps required for the particles to reach one of the walls can be shown
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to be proportional to ð2b=rÞaf=2 if l is much smaller than 2b [41]. Using results from [42], the average number
of steps can be computed by taking the expected value to yield
NS ¼
21þaf=2C 1

2
þ af

4

� �
Cð�1=2Þ

af

ffiffiffi
p
p

Cð�af=4Þ
2b
r

� �af=2

: ð11Þ
The number of total hits that a particle is expected to have with either of the walls can now be estimated by
dividing average of the total number of steps for a particle between the source and the passage plane by the
quantity NS computed in Eq. (11). If Dt is the time step between successive jumps, then the expected number of
total hits is given by
NH ¼
L

vDtN S

: ð12Þ
A non-dimensional quantity S can now be formulated which is a measure of ratio between average amount
of time spent on the wall versus average amount of time spent in the fluid phase. For this purpose, NH is mul-
tiplied by the expected waiting time and then divided by the expected time of travel for a particle in fluid phase
to the passage plane given it started at the source:
S ¼
N H

2Cð1�1=awÞ
p rw

h i
ðL=vÞ : ð13Þ
A large value of S will therefore be associated with walls offering higher degree of stickiness. Non-dimen-
sional concentration in the presence of sticky boundaries can be written as C0(X, Y; T) = f(af, aw, P, R, S). The
first passage time (FPT) density is found at X = 1 by integrating the result from Y = �1 to Y = 1. A typical
non-dimensional FPT density exhibiting a long-tailed behavior is shown in Fig. 6. To verify the correctness of
non-dimensional formulation, numerous numerical simulations were performed by changing system variables
while leaving non-dimensional parameters unchanged. It was observed that the FPT densities matched exactly
to each other as long as the set of five non-dimensional parameters remained fixed.

7. Results and discussion

The non-dimensional FPT density is a function of five non-dimensional parameters, namely, af, aw, P, R,
and S. A sensitivity analysis of FPT density with respect to these five parameters provides insight into the
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comparative importance of different mechanisms of transport and will help in differentiating regimes of flow
where a certain variable will play a more significant role in influencing the FPT density than others. Since the
FPT densities depend on a Levy motion, they invariably have a slowly decaying tail. Moments higher than the
first are infinite for processes governed by an a-stable distribution with a > 1. However, one can still talk about
skewness in relative sense by comparing mean first passage time (MFPT) with the time to peak, TP. Similarly,
finite central portions of the FPT density can be analyzed to qualitatively examine the spread. In Fig. 7, for
fixed af and aw, we have presented plots of MFPT, TP, and width of central 80% of FPT density (TW) as a
function of P for different values of R and S. A set of similar figures (not shown here for brevity) were con-
structed for other values of af and aw.

MFPT describes the retardation that the centroid of the breakthrough curve experiences. Comparative val-
ues of MFPT and TP can be used to study the skewness while TW is a representative measure of the spread.
These three statistical quantities are discussed in the following paragraphs with reference to the trends
observed in the set of figures constructed in manner similar to Fig. 7.

(i) MFPT: Adsorption (S) affects the MFPT by delaying the arrival of particles. However, the sensitivity of
the MFPT with respect to S decreases very rapidly as R increases. A smaller R favors higher MFPT by
allowing a larger S to influence the breakthrough curve more strongly. Hence the MFPT increases as S

increases and R decreases. However, if S is negligible, R seems to have only a mild effect, and P does not
affect the MFPT at all. The mild influence of R on the MFPT in absence of any adsorption can be attrib-
uted to the congregation of particles near the boundaries of the pore (Fig. 8).
The insensitivity of the MFPT to P for the zero adsorption case is in accordance with the results found
for the classical reactive advection–diffusion equation [43]. However, an increasing P was found to sig-
nificantly influence an increase in the MFPT for cases where S was 0.03 or 0.1 (medium and high values).
For P more than 10, the relation between the MFPT and P appears to be linear irrespective of the order
of magnitude of R and S. The interplay of P, R, and S in determining the extent by which MFPT gets
delayed suggests that these three non-dimensional parameters influence the breakthrough curve in a
MFPT Tp Tw

R=0.01

R=0.1

R=1.0

1 20 1 20 1 20

1 20 1 20 1 20

1 20 1 20 1 20

Fig. 7. MFPT, TP, and TW as a function of P (varying from 1 to 20) for different values of R. The three lines in each plot correspond to S

values of 0.1 (triangle), 0.03 (square), and 0.001 (diamond). The values of af and aw are 1.8 and 1.5 respectively.
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highly coupled fashion. When R is very large (R = 1.0 in Fig. 7), a higher or lower S makes little differ-
ence in the MFPT as the plume does not spread enough for the boundaries to play a major role. Under
these conditions P has no bearing on the value of the MFPT. Similar conclusions can be drawn by letting
R become very large in Eq. (10) and then differentiating the characteristic function of the resultant equa-
tion to find the first moment.
Sensitivity of the MFPT with respect to af can be studied by comparing figures having a fixed aw while
changing af. An increase in af appears to favor a slight decrease in the MFPT. It is interesting to note
that as af increases, the expected absolute length of jump decreases, and hence contrary to our observa-
tion, a forward biased jump would have exhibited a smaller MFPT for smaller af. However, after each
jump, our model chooses a jump direction which is uniformly distributed over a unit sphere and there-
fore for the purpose of computation of the MFPT, the effect of longer jumps in forward direction is
annulled by an equal number of longer jumps in the backward direction. The slight increase that we
see in the MFPT as af decreases is basically a ramification of longer jumps in transverse direction which
increases the influence of smaller R and larger S. For larger values of R, where breakthrough curves are
slightly influenced by S, a decrease in af slightly lowers the MFPT. For the near classical case (af close to
2.0) with far-off boundaries (R = 1.0) and negligible sorption (S = 0.001), the MFPT goes to 1.0 as
would be expected from the results of classical advection–diffusion equation [43].
The effect of aw on the MFPT can be studied by changing that quantity while keeping af fixed. One may
be tempted to predict that higher aw will have a decreasing influence on the MFPT because of the smaller
averages associated with higher a. However, in the non-dimensional framework, the average time spent
on the wall is accounted for by S and hence the effect of changingaw may not necessary be in accord with
dimensional analysis. In fact, an increase in aw was seen to increase the MFPT as well. This happens
because particles with a waiting time distribution characterized by a higher value of aw spend a shorter
amount of time on the wall and are relatively quickly released back into the fluid phase. The faster the
release, the higher is the probability of particles accumulating near the wall and negatively influencing
the MFPT. However, overall it can be said that the influence of af and aw on the MFPT is fairly small
when compared to the influence of P, R, and S. Hence af and aw are not the key factors when examining
the sensitivity of the MFPT, although they do a play a major role in determining the value of the MFPT
by the virtue of being a part of the definition of P, R, and S.

(ii) MFPT, TP, and skewness: Second- and higher-order moments are mathematically non-existent for trans-
port processes governed by an a-stable Levy motion. However, one can use the information gathered in a
finite amount of time to qualitatively speak about the nature of the breakthrough curve. One such
important feature is the degree of skewness (asymmetric nature of a breakthrough curve). Skewness
can be assessed by comparing the MFPT with the time to peak, TP. If TP is smaller than the MFPT,
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then the breakthrough curve will have a positive skewness. The rising limb in this case will be shorter
(and steeper) than the falling limb and vice-versa when TP is larger than the MFPT. In all simulation
runs, TP was observed to be smaller than the MFPT. This result held true for all possible combinations
of P, R, S, af, and aw. The difference was only that of degree. The gradual release of particles in the fall-
ing limb, as compared to the more rapid release of particles in the rising limb, can largely be attributed to
particles left in the vicinity of top and bottom walls, owing to both the adsorption phenomenon and the
parabolic velocity profile of the advecting fluid (see Fig. 9).
Relative changes or sensitivity of TP with respect to the five non-dimensional parameters showed similar
qualitative trends, but differed quantitatively to what has been discussed for the case of the MFPT. This
means that TP increases rapidly with increasing S and increasing P for cases when R is small. For med-
ium and large R values (0.1 and 1.0), TP remained fairly insensitive to changes in S and P. One notewor-
thy difference between the dependence of the MFPT and TP on P is that a linear trend occurs at a slightly
later stage. This becomes more apparent as af increases to 2.0.
TP varies slightly with af and increases with increasing aw. However, an increase in TP with respect to aw

is more pronounced than that of the MFPT. These slight variations in the behavior of the MFPT and TP

with respect to the five non-dimensional parameters stretch or shorten the gap between the MFPT and
TP and thereby increase of or decrease the amount of skewness one can observe in the breakthrough
curves. It was observed that the breakthrough curves are minimally skewed for small values of S irre-
spective of the value of R. Hence R does not have a marked effect on the skewness unless it is coupled
with a non-negligible S. One can think of R as a constricting parameter which impedes the transverse
expansion of an evolving plume. However skewness in the final breakthrough curve is often a result
of long tails developing behind the centroid of the evolving plume and the non-dimensional parameter
R does not aid this occurrence unless coupled with a suitably large S. An increasing P also helps in
lengthening the falling limb as it influences the growth of the MFPT more than the growth of TP.
The difference in these two growth rates are non-linear for smaller values of P, but gradually become
linear as P increases. For fixed values of P, R, S and af, we observe that as aw increases, the gap between
the MFPT and TP shrinks. Hence a long tailed waiting time distribution has a tailing effect on the non-
dimensional breakthrough curve. Sensitivity of skewness with respect to af is the same as the sensitivity
of the MFPT.

(iii) TW and spread: Spread in a breakthrough curve is important when analyzing the features of a diffusive
process. Although the second moment for Levy processes is infinite, one can still gain a fair amount of
understanding of the transport mechanism by studying a large central portion of a breakthrough curve.
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Fig. 9. Trail of particles left at the walls due to adsorption and parabolic velocity profile. Axes have not been non-dimensionalized.
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We have chosen to examine the spread of the central 80%. The difference in the location of points on
falling and rising limb between which the mid 80% of the particles exit the passage plane is denoted
by TW and plotted in the third column of Fig. 7.

With no or little sorption, it is reasonable to expect that TW will decrease as P increases. Not surprisingly,
this is what is exhibited in all the plots corresponding to S = 0.001. An increase in R from 0.01 to 1.0 for neg-
ligible sorption (S = 0.001) appears to have a non-linear influence on TW. Depending upon value of af, for
S = 0.001, TW first increases as R increases from 0.01 to 0.1 and then either decreases (with lower af) or
remains relatively unchanged (with higher af) as R increases from 0.1 to 1.0. This behavior can again be under-
stood if we think of R as a constricting parameter. A smaller R, which means that the boundaries are fairly
close when compared to the transverse diffusive length of the evolving plume, impedes long flights. Hence an
increase in R, for negligible sorption, has a positive effect on TW. This effect is more pronounced in cases with
smaller af. However, as R increases, a majority of particles having started their journey from the center plane
of the pore, sample a fairly high velocity field which aids in reducing the spread, TW. As R increases, one
reaches a point where the increase in TW because of possible long flights is more than accounted for by the
decrease in TW owing to the parabolic velocity field that the particles may sample. It should be emphasized
that these results are associated with small S. As S increases from 0.001 to 0.1, a few interesting trends appear
in the plots of TW. Chief among these is an increasing trend in TW despite an increasing P. Aided by a com-
bination of a higher value of S, or a smaller value of R, or a smaller value of af, a rising trend in TW starts from
a point somewhere between P = 1 to P = 10 depending upon the comparative values of S, R, and af. The influ-
ence of aw on this reversal of trend is minimal.

With negligible sorption, smaller values of af are expected to have a positive influence on the overall spread,
and hence it is not a surprise when that trend continues for cases when sorption is substantial. What is more
interesting is that unlike the case with negligible sorption, TW increases monotonically as R decreases. Though
a smaller value of R curtails many of the long flights and has a reducing effect on TW, in the presence of sorp-
tive boundaries the higher frequency of particles hitting and attaching to the wall leads to a far larger spread.
As P increases for cases with constant S, the net amount of adsorbed time increases as well, since S by def-
inition represents a ratio of adsorbed time to the time spent in the fluid phase. The influence of S is strong
enough to not only counter, but over compensate for any reduction in TW that may be brought about by
an increase in P.

8. Conclusions

Motile particle transport in a slit-pore was studied numerically using Levy motion and an a-stable distri-
bution to characterize the motility and stickiness of the boundaries, respectively. The advective–dispersive
transport process coupled with adsorption at the boundaries leads to a long-tailed first passage time (FPT)
density intricately tied to a number of system variables. With the help of the Eulerian Fokker–Planck equa-
tion for a Levy motion and the sticky boundary condition, five non-dimensional parameters were derived that
control the concentration evolution. Simulations were carried out in Lagrangian framework to compute the
non-dimensional FPT densities and its statistical properties representing mean, spread, and skewness. By
varying only one of the five non-dimensional parameters, their influence on the FPT density was studied.
It was observed that under typical conditions, the non-dimensional parameters affect the mean, spread,
and skewness of FPT density in a highly coupled fashion. Hence sensitivity of FPT density with respect to
any single non-dimensional parameter is also determined by the relative values of other parameters. A
detailed analysis of mean first passage time (MFPT), spread, and skewness was presented. It is hoped that
the non-dimensionalization and sensitivity analysis will aid experimentalists in designing experiments and
processing the data.
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Appendix A. a-Stable deviate generator

If Y � Sa(r, b, l) and a 6¼ 1, then Y = rX + l, where X � Sa(1, b, 0) is a standard stable random variable.
To generate a standard stable deviate, the following steps are followed:

(i) Generate a random variable V uniformly distributed on (�p/2, p/2) and an independent exponential ran-
dom variable W with mean 1.

(ii) Compute
X ¼ Sa;b
sin½aðV þ Ba;bÞ�
½cosðV Þ�1=a

cos½V � aðV þ Ba;bÞ�
W

� �ð1�aÞ=a

; ðA:1Þ
where
Sa;b ¼ 1þ b2 tan2 pa
2

h i1=ð2aÞ
ðA:2Þ
and
Ba;b ¼
arctan b tan pa

2

� �	 

a

: ðA:3Þ
Equations corresponding to the case of a = 1 are not shown here for brevity.
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